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Abstract

A new and efficient numerical procedure is applied for the inverse simultaneous estimation of temperature-dependent thermal prop-
erties (thermal conductivity and volumetric heat capacity) of fully developed fluids flowing through a circular duct. The procedure makes
use of both the Sequential Function Specification Method as the inverse protocol and the Network Simulation Method as the numerical
technique. The temperature solution at discrete times at several points of the wall–fluid interface can be solved from the direct problem
by adding a normal random error. A time-dependent heat flux boundary condition is applied to the inlet region. The proposed method
provides estimations of the functions, kðT Þ and CðT Þ, regardless the waveform of those functions even without prior information on the
kind of dependence concerned. The solutions take the form of piece-wise functions with a number of stretches that may be specified. A
common iterative least-squares approach is used to minimize the classical functional. Various approaches to solving this problem are
discussed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Inverse problems are one of the fastest growing areas in
various fields. Such problems have one main difficulty, the
instability of their solution when the measurements are
affected by noise, that is, their inherently ill-posed nature
makes the existence of more than one solution possible.
In the field of heat transfer, different types of inverse heat
conduction problem (IHCP) exist, such as: (i) the identifi-
cation of thermophysical properties, (ii) the determination
of boundary conditions, (iii) the determination of heat gen-
eration sources and (iv) determination of the initial state.
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doi:10.1016/j.ijheatmasstransfer.2007.01.004

* Corresponding author.
E-mail address: joaquin.zueco@upct.es (J. Zueco).
If the thermal properties are dependent on the tempera-
ture, the problems are non-linear and the solution of both
the direct (DHCP) and inverse (IHCP) problems generally
require the use of approximate numerical techniques, such
as finite-differences, finite-element, enthalpy formulation or
Laplace transformations, among others, Beck et al. [1, pp.
78–102]. The greater the temperature dependence of k and/
or C, the more difficult it is to reach a convergence solution
for either DHCP or IHCP.

Within the first type (for solids) of IHCP, those con-
cerned with the estimation of temperature-dependent ther-
mophysical properties may be particularly complex,
especially if no information is available on the functional
form of the unknown property and if the functional mini-
mization has to be performed in an infinite dimensional
space of functions. Hence, the simultaneous estimation of
both k and C in one sole experiment, a recent problem that
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Nomenclature

C volumetric heat capacity (J m�3 K�1), C ¼ qce

C capacitor and capacitance (F), Fig. 1
ce specific heat (J kg�1 K�1)
D1, D2 length parameters
E voltage-control voltage-source, Fig. 1
F functional defined in Eq. (5)
G voltage-control current-source, Fig. 1
j heat flux rate (W m�2)
k thermal conductivity (W m�1 K�1)
Kk, KC increment of the unknown quantities k and C,

respectively
L length of the duct
Nx number of volume elements in the axial direc-

tion
Nr number of volume elements in the radial direc-

tion
m, n integer numbers
P number of sensors
R inner radius of the duct (m)
R resistor (X)
r spatial radial co-ordinate (m)
t time (s)
T temperature (�C)
u axial fluid velocity (m s�1)
x spatial axial co-ordinate (m)
z 1; 2; . . . ; Z
Z number of stretches of the piece-wise function in

the IHCP
Dt interval of time between measurements
DT a temperature interval associated to the functional
Dr thickness of the control volume in the radial

direction

Dx thickness of the control volume in the axial
direction

1 relate to a very high value

Greek symbols

dk, dC convergence parameters for k and C, respec-
tively

e normal random error
f thickness of the wall
kk, kC reduction factors for k and C, respectively
q density (kg m�3)
r standard deviation of the errors in the tempera-

ture measurements
x random number variable
w integer number, 1; 2; 3; . . .

Subscripts

end reference to the final temperature of the range of
estimation selected

ex exact solution of the direct problem
f fluid, also a particular location for measure-

ments, 1; 2; . . . ; P
g number of temperatures for each sensor and

each DT a; 1; 2; . . .
i, j denote the location of the cell, Fig. 1
ini reference to the initial temperature of the range

of estimation selected
mea measurement provide by the sensor
0 initial condition
obt solution of the inverse problem
s solid

xr=0 

r
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  Heated region

ux

x=D1 x= D2

2R  2(R+ζ)

Insulated region

Points of measurements

Insulated region

Fig. 1. Physical scheme of the problem.
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has scarcely been treated, Yang [2], is much more difficult
to solve. A convergent and valid estimation can be reached
by iteration, taking the temperature measurements
(DHCP) at several points of the solid and defining an
adequate functional that compares step by step the tem-
peratures provided by the inverse solution and the
measurements.

Huang and Özisik [3] obtained precise estimations for
1-D solids in the case of linear and sinusoidal dependencies
of both properties using approximate direct integration
method. Huang and Yan [4] also obtained estimations of
the same dependencies utilizing the conjugate gradient
method of minimization and the adjoint equation while
Sawaf et al. [5] also obtained estimations of these proper-
ties in a 2-D orthotropic solid using Levenberg–Marqu-
ardt’s iterative procedure. Using the easier function
estimation technique, which assumes that the form of the
function is known, Dantas and Orlande [6] made simulta-
neous estimations of kf and Cf applying the conjugate gra-
dient method; including a study of the influence of sensor
location in the same paper.

In this work, a new procedure is developed for the
simultaneous determination of the temperature-dependent
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thermal properties (thermal conductivity and volumetric
heat capacity) of fluids flowing through circular ducts of
finite thickness. This is a conjugate conduction–convection
non-lineal problem, in which a fully developed laminar
flow, assuming bi-dimensional (axial–radial) wall and fluid
heat conduction, is considered, with negligible viscous
dissipation.

Huang and Özisik [7] used a similar mathematical model
for estimating the space wise variation of an unknown
applied wall heat flux in laminar flows by means of the con-
jugate gradient method. The authors did not consider the
wall effect (negligible thickness of the duct) and assumed
constant thermal properties. Few works have been devoted
to the estimation of physical parameters in fluids. Oul-
Lahoucine et al. [8] developed an experimental method
using a thermistor probe assisted by numerical analysis to
measure the constant thermal conductivity of liquids and
powders using the least square method. Liu and Özisik
[9] determined the constant thermal conductivity and volu-
metric heat capacity, simultaneously, of a fluid in laminar
forced convection inside a circular duct, using the iterative
algorithm of Levenberg–Marquardt’s method. Finally,
Kim and Lee [10] developed an inverse method for simulta-
neously estimating the temperature-dependent thermo-
physical properties in fluids based on experimental
methodology and the algorithm of Levenberg–Marqu-
ardt’s method, but with prior knowledge of the type of
dependence.

This general propose procedure uses the network simu-
lation method (NSM hereafter) as the numerical technique
and does not require prior information on the kind of
dependence of the thermal conductivity and heat capacity.
The procedure may be applied regardless of the kind of
temperature dependence of these properties, as long as they
are continuous temperature functions given by an explicit
mathematical function or by finite stretches piece-wise
functions. The estimations of kf and Cf are piece-wise func-
tions with as high a number of stretches as is required to
approximate the inverse solutions to the exact values.

The typical functional of these problems contains the
simulated measurement data taken at various points of
the system. These measurements are then compared within
the functional with the solution of the partial inverse prob-
lem by applying NSM [11] in each iteration, in order to esti-
mate the stretches that conform the piece-wise final
solution. NSM has already been successfully applied to
solving several types of direct problem: see Alhama and
González-Fernández [12] for applications to food process-
ing and Zueco et al. [13] for applications to the laminar flow
of fluids in ducts. As regards inverse problems, NSM was
applied by Zueco et al. [14] and Alhama et al. [15] to esti-
mate temperature-dependent thermal properties, by
Alhama et al. [16] for unsteady heat flux wall estimations
and by Zueco et al. [17] for estimating the time-dependent
heat transfer coefficient, while Zueco and Alhama [18]
developed an iterative algorithm for the estimation of the
temperature-dependent emissivity of solid metals. Among
the advantages of the NSM is the fact that no mathematical
manipulations or convergence criteria are needed to solve
the finite difference equations resulting from the discretiza-
tion of the partial difference equations of the mathematical
model. Both tasks are carried out by the powerful software
PSPICE [19] used to solve the network model.

2. Direct problem: the system and governing equations

Cylindrical 2-D geometry is used. A fully developed flow
fluid that crosses a duct of length L, radius R and thickness
E, and whose initial temperature (duct and fluid) is T0, is
suddenly submitted to heating process by applying a time-
variable heat flux over the inlet region D1 6 x 6 D2. The rest
of the duct region is under adiabatic condition. Both the
thermal conductivity and heat capacity of the fluid depend
on temperature, kfðT Þ and CfðT Þ, while the same properties
for the duct are constant. The mathematical model of the
DHCP is defined by the following set of equations:

ð1=rÞðo½ðrksÞoT s=or�=orÞ þ ðo½ksoT s=ox�=oxÞ ¼ ðqceÞsoT s=ot;

at R < r < Rþ E and t > 0 ð1aÞ
ð1=rÞðo½ðrkfÞoT f=or�=orÞ þ ðo½kfoT f=ox�=oxÞ
¼ ðquxceÞfoT f=oxþ ðqceÞfoT f=ot; at 0 < r < R and t > 0

ð1bÞ

Boundary conditions:

T f ¼ T s ¼ T 0; at x ¼ 0; t > 0 ð2aÞ
oT s=or ¼ oT f=or ¼ 0 at x ¼ L; 0 < r < Rþ E; t > 0 ð2bÞ
oT f=or ¼ 0 at r ¼ 0; 0 < x < L; t > 0 ð2cÞ
T s ¼ T f ; ksoT s=or ¼ kfoT f=or

at r ¼ R; 0 < x < L; t > 0 ð2dÞ
� ksoT s=or ¼ qs at r ¼ Rþ E; D2 > x > D1; t > 0 ð2eÞ
oT s=or ¼ 0 at r ¼ Rþ E; 0 < x < D1; D2 < x < L; t > 0

ð2fÞ

Initial condition:

T f ¼ T s ¼ T 0 8r; x; t ¼ 0 ð3Þ

Eqs. (1a) and (1b) refer to the wall and fluid regions,
respectively. ux ¼ 2uav½1� ðr=RÞ2�, with uav being the aver-
age velocity.

In the case of the direct problem considered above, the
thermal property dependencies are regarded as known:

kfðT wÞ ¼ kw; 1 6 w 6 m ð4aÞ
CfðT wÞ ¼ Cw; 1 6 w 6 n ð4bÞ

where kf and Cf are the thermal conductivity and the volu-
metric heat capacity of the fluid, respectively; x, r and t are
the independent variables, axial position, radial position
and time, qs is the constant incident heat flux applied to
the wall and m and n are integer numbers. Piecewise depen-
dencies (4a) and (4b) are able to reproduce any kind of
function, kfðT wÞ or CfðT wÞ, including the strong dependen-
cies appearing in phase change phenomena, providing m
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and n are large enough. Arbitrary mathematical functions
for kfðT Þ and CfðT Þ may also be assumed by the method.

3. The inverse problem

In the inverse problem case the temperature dependen-
cies of the thermal properties are unknown and they must
be predicted from the temperature measurements taken at
P different positions (number of sensors) xf, f ¼ 1; . . . :P ,
at the wall–fluid interface (r ¼ R).

The performance function for the identification of kfðT Þ
and CfðT Þ is expressed by the sum of square residuals
between the estimated and measurement temperatures as
follows:

F ½kf ;Cf � ¼
XP

f¼1

Xrz;f

g¼0

T obt;gðxf ; tg;R;k;CÞ� T mea;gðxf ; tg;R; eÞ
" #2

ð5Þ
with z ¼ 1; 2; . . . ; Z the actual stretch (Z being the number
of stretches of the piece-wise function), T obtðxf ; tg; r ¼
R; k;CÞ the estimated temperature and T meaðxf ; tg; r ¼ R; eÞ
the measured temperature at the localization ðx ¼ xf ;
r ¼ RÞ. The number of terms within the functional for each
stretch and each sensor, rz,f, coincides with the total num-
ber of measurement for each sensor within the interval of
estimation defined as T 0 þ ðz� 1Þ=2 DT a ! T 0 þ ðzþ 1Þ=
2DT a. For example, for T 0 ¼ 0 �C, DT a ¼ 20 �C and
z ¼ 4, the interval is 30 �C ? 50 �C, Fig. 3. Dt is the time
interval between measurements. The set T meaðxf ; tg;R; eÞ is
obtained by adding a normal random error, T exðxf ; tg;RÞ,
to the solution of the DHCP.

T meaðxf ; tg;R; egÞ ¼ T exðxf ; tg;RÞ þ eg ð6Þ
where eg ¼ xgr, xg is a normally distributed random num-
ber, with zero mean, a standard deviation of unity and a
99% confidence level. xg lies within the range �2.576 <
xg < 2.576, with r being the standard deviation of the
errors in the temperature measurements.

The value of Z is related to the temperatures by the
expression

Z ¼ 2ðT end � T iniÞ=DT a ð7Þ
where Tend is the final temperature of the range to be
estimated.

A common iterative least-squares approach is used to
minimize the performance function F, which leads to the
solution of the IHCP in the form of a linear piece-wise
function of Z stretches of variable slope and temperature
interval DT a. A program routine based in the Sequential
Function Specification Method (SFSM) [1, pp. 119–133],
allows the slope of the actual stretch to be continuously
changed by adding new steps to both the volumetric heat
capacity and the thermal conductivity, until the functional
reaches a minimum value. This routine runs iteratively
until a prefixed convergence criterion is satisfied. The
numerical resolution of the energy equation is solved with
the Network Simulation Method.
The formulation of the IHCP involves equations (1),
(2a–f), (3) and the set of temperatures T meaðxf ;R; tg; egÞ
from Eq. (6). With this information available, the aim
now is to estimate simultaneously the temperature depen-
dence of kfðT Þ and CfðT Þ for the fluid, whose exact values
are given by Eqs. (4a) and (4b), by means of new piece-wise
function of m and n stretches, respectively.
4. Network model

It is known [13] that with larger values of the Péclet
number ð2uavRCf=kfÞ, both the fluid axial conduction and
the effect of wall conduction on heat transfer are negligible.
Nevertheless, the proposed model does not assume this
simplified hypothesis and, consequently, may be applied
to a wide range of Péclet numbers. In [13] we explain the
steps for designing the network model of the direct prob-
lem for the whole medium (wall and fluid) when thermal
properties are constant. The same model is used here for
the wall. As regards the fluid network model, the resistors
of the network model (for the fluid) were changed by volt-
age-control current-sources due to the temperature-depen-
dence of their thermal properties.

The geometry of each volume element is a circular
crown, whose surface section has a dimension of Dr and
Dx, which are the number of cells in the radial and axial
directions of Nr,w (wall), Nr,f (fluid) and Nx, respectively.
Spatial discretization of Eq. (1b) leads to the following
ordinary differential equation:

½T i;j�Dr=2 � T i;j�=½2Dxri;j�Dr=2=Dr�ki;j�Dr=2ðT i;j�Dr=2Þ
� ½T i;j � T i;jþDr=2�=½2Dxri;jþDr=2=Dr�kf ;i;jþDr=2ðT i;jþDr=2Þ
þ ½T i�Dx=2;j � T i;j�=½2kf;i�Dx=2;jðT i�Dx=2;jÞri;jDr=Dx�
� ½T i;j � T iþDx=2;j�=½2kf;iþDx=2;jðT iþDx=2;jÞri;jDr=Dx�
¼ 2uavð1� r2

i;j=R2Þ½T iþDx=2;j � T i�Dx=2;j�ri;jDr

þ Cf ;i;jðT i;jÞri;jDrDxdT i=dt ð8Þ

where Ti,j is the temperature in the centre, T i;jþDr=2, T i;j�Dr=2

are the temperatures in the radial extremes, and T iþDx=2;j,
T i�Dx=2;j are the temperatures in the axial extremes
(Fig. 2). Defining the currents

ji;j�Dr=2 ¼ ½T i;j�Dr=2 � T i;j�=½2kf;i;j�Dr=2ðT i;j�Dr=2Þri;j�Dr=2Dx=Dr�
ð9aÞ

ji;jþDr=2 ¼ ½T i;j � T i;jþDr=2�=½2kf;i;jþDr=2ðT i;jþDr=2Þri;jþDr=2Dx=Dr�
ð9bÞ

ji�Dx=2;j ¼ ½T i�Dx=2;j � T i;j�=½2kf;i�Dx=2;jðT i�Dx=2;jÞri;jDr=Dx�
ð9cÞ

jiþDx=2;j ¼ ½T i;j � T iþDx=2;j�=½2kf;iþDx=2;jðT iþDx=2;jÞri;jDr=Dx�
ð9dÞ

ji;j;x ¼ 2uavð1� r2
i;j=R2ÞCf ;i;jðT i;jÞ½T iþDx=2;j � T i�Dx=2;j�ri;jDr

ð9eÞ
ji;j;1 ¼ Cf;i;j;avri;jDrDxdT i;j=dt ð9fÞ
ji;j;2 ¼ DCf ;i;jðT i;jÞri;jDrDxdT i;j=dt ð9gÞ
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Fig. 2. Network model. (a) For the finite volume element. (b) For the boundary conditions.
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Eq. (8) may be written as Kirchhoff’s law for the following
currents:

ji;j�Dr=2 � ji;jþDr=2 þ ji�Dx=2;j � j;iþDx=2;j

¼ ji;j;x þ ji;j;1 þ ji;j;2 ð10Þ

The network model for the cell is now designed (Fig. 2a).
Eqs. (9a) and (9b) define the current that leaves and enters
the 2-D cell i, j in the radial direction; ji;j�Dr ¼
�ðT i;j � T i;j�DrÞðDr=2kf ;i;j�Dr=2ri;j�Dr=2DxÞ being kf;i;j�Dr, the
conductivity to both ends of the volume element (cell) i, j,
dependent on temperatures T i;j�Dr. Heat fluxes ji;j�Dr are
implemented by means of voltage-control current-sources
(Gi;j�Dr and Gi;jþDr), whose value, specified by Eqs. (9a)
and (9b), can be programmed. Two control voltage sources,
Ei;j�Dr and Ei;jþDr, controlled by T i;j�Dr and T i;jþDr, respec-
tively, provide the values of ki;j�Dr and ki;jþDr. To implement
Eqs. (9c)–(9e), which are related to axial direction, the same
kinds of devices are used. The volumetric heat capacity of
the cell, Cf ;i;jðT i;jÞ, is evaluated by means of Eq. (4b). The
value of Cf,i,j is divided into two parts in the form
Cf ;i;j; ¼ Cf ;i;j;av þ DCf;i;j, with Cf,i,j,av being the mean value
of Cf,i,j within the whole temperature estimation range, so
that it is possible to implement the initial condition by fixing
the voltage of the capacitor. Eq. (9f) defines a capacitor, Ci,j,
of capacitance Ci;j ¼ Cf;i;j;avri;j DrDx, while Eq. (9g) is imple-
mented by a voltage-control current-generator, Gi,j,C

which is controlled by both Ei,j and the current of Ci,j(ji,j,1),
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according to the function ‘‘ji;j;1½ðCf ;i;j � Cf;i;j;avÞ=Cf ;i;j;av�”.
The network is completed by adding R1, a high value resis-
tor needed to provide continuity in the circuit, according to
PSPICE requirements.

Each cell is 2-D electrically connected to adjacent cells
to form the whole model of the medium (Fig. 2b). A resis-
tor of infinite value, R1, is used to implement the adiabatic
boundary conditions (2b), (2c) and (2f), while constant
voltage sources are implemented to satisfy condition (2a).
Heat flux sources are also implemented in the model for
the boundary condition (2e). As regards boundary condi-
tion (2d), this is assumed by simple connection of the fluid
and wall cells. Finally, initial condition (3) is implemented
by charging the capacitors of each cell to a voltage value
equal to the initial temperature.

5. The present procedure

The algorithm for the iterative scheme (Visual C++ pro-
gram) is developed from the algorithm proposed by Zueco
[20]. Each segment of the piece-wise function runs from the
temperature T 0 þ ððz� 1Þ=2ÞDT a to the temperature
T 0 þ ððzþ 1Þ=2ÞDT a. A special auxiliary device, named E
    30
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Fig. 3. Illustration of temperature-dependent function estimation for both fun
in Fig. 2a, generates the piece-wise temperature-dependent
function both for the conductivity and the heat capacity.
This device makes it possible to select both the length of
each stretch and the change in its slope, which continuously
increases or decreases until the convergence criteria are sat-
isfied. Fig. 3 shows an example for z ¼ 4.

The following steps summarize the proposed procedure:

(i) Solve DHCP numerically (using the NSM); from this
solution, the set T meaðxf ; tg;R; egÞ is obtained using a
normal random number generator. Fix the values of
Kk and KC. T 0 ¼ T ini.

(ii) Estimate the initial points of the first stretch of the
two estimations (conductivity and heat capacity),
i.e. ðkf;ini; T f ;iniÞ and ðCf;ini; T f;iniÞ. To this end, choose
a horizontal stretch of length DT ini < DT a that mini-
mizes the functional equation (5), z ¼ 0.

(iii) Fix the values of DT a (temperature interval of the
stretches), dk and dC (convergence criteria) and
kk ¼ kC ¼ 0:75 (reduction factors for the slopes). Cal-
culate Z (total number of stretches).

(iv) z ¼ zþ 1, T z ¼ T z�1 þ DT a/2, T zþ1 ¼ T z�1 þ DT a.
Evaluate the values of rz,f.
Iterative process 
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ctions for z = 4. (a) Thermal conductivity. (b) Volumetric heat capacity.
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(v) Determine F, Eq. (5), for each pair of segments, one
belonging to the (three) segments limited by the points
ðkf;z�1; T z�1Þ and (kf ;z�1 þ Kk; T zþ1), ðkf ;z�1; T z�1Þ and
ðkf;zþ1; T zþ1Þ, and (kf ;z�1; T z�1) and ðkf;z�1 � Kk; T zþ1Þ,
and the other belonging to the (three) segments lim-
ited by the points (Cf ;z�1; T z�1Þ and (Cf ;z�1 þ KC;
T zþ1), (Cf ;z�1; T z�1Þ and (Cf;zþ1; T zþ1), and (Cf;z�1;
T z�1Þ and (Cf ;z�1 � KC; T zþ1). The set of T obtðxf ; tg;R;
k;CÞ within the functional is evaluated by applying
NSM as a direct problem using the kfðT Þ and CfðT Þ
values from the segments defined above. The final
points that belongs to the segments connected to the
minimum value of the functional, kf;z�1 ¼ kf ;zþ1;min

and Cf ;zþ1 ¼ Cf ;zþ1;min are retained.
(vi) Kk ¼ kkKk and KC ¼ kCKC (fine adjustment).

(vii) Repeat steps (v) and (vi) until Kk < dk and KC < dC,
then retaining the points (kf ;zþ1;min; T zþ1) and
(Cf;zþ1;min; T zþ1).

(viii) Select the extreme of the actual stretch, ðkf ;z; T zÞ ¼
½ðkf ;z�1; T z�1Þ þ ðkf ;zþ1;min; T zþ1Þ�=2; ðCf ;z; T zÞ ¼ ½ðCf;z�1;
T z�1Þ þ ðCf ;zþ1;min; T zþ1Þ�=2.

(ix) If z < Z, go to step (iv) to estimate the new stretch.
(x) If z ¼ Z, solve the direct problem with the complete

inverse solution of kfðT Þ and CfðT Þ for the total dura-
tion of the transitory, and evaluate the complete
functional F corresponding to this estimation.

(xi) Repeat steps (ii)–(x) for new, other values (lower and
higher) of Kk and KC (the criteria for determining
these new values of Kk and KC is open at the pro-
gram, tentative tests can help to establish this criteria)
and compare, successively, the actual complete func-
tional (for the whole temperature-range of the esti-
mated dependences of kf and Cf) with the former
until the actual becomes smaller. Finally, retain the
final estimation (the solution of the inverse problem)
as the one corresponding to the minimum complete
functional.

As a general rule, the points where measurements are
taken must be selected both near and within the region
D1 < x < D2 (heated region), since this is where the greatest
changes in temperature occur. It is convenient to include
measurement points in the adiabatic region in order to
improve the sensitivity of the estimation. On the other
hand, the selection of parameters qs, DT a, Dt and the num-
ber of temperature measurements must be chosen so that
rz,f is in the order of 20 measurements or larger. For the
examples solved here, five (three in the heated region and
two in the adiabatic region) and seven (three in the heated
region and four in the adiabatic region) regularly distrib-
uted measurement points were selected, Fig. 1.
qs = 0.5 W m�2, DT a ¼20 and 30 �C and Dt ¼0.5 s.

6. Results and discussion

Figs. 4–10 show the estimations provided by the pro-
posed method for different values assigned to the parame-
ters P, r, Dt, DT a, Kk and KC. Exact solutions is also
included in the figures (continuous line). The value of uav

for all the figures is 0.2 m/s, the radius and the length of
the duct are 0.2 m and 1.5 m, respectively, the thickness
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of the wall 0.02 m, the thermal diffusivity of the wall is
1.5E�05 m2 s�1, while the incident heat flux applied to
the wall is qs = 0.5 W m�2. The exact values of the thermal
properties are specified in Eq. (4a) for the thermal conduc-
tivity, kfðT wÞ ¼ kw for 1 6 w 6 m ¼ 2, where kf(0 �C) =
24.08E�03 W m�1 K�1 and kf(120 �C) = 32.61E�03 W m�1



Table 1
Minimum functional and average relative errors for different values of Kk

and KC for P = 7, r = 1.0, Dt ¼0.5 s and DT a ¼20 �C

Kk KC Functional Cerror (%) kerror (%)

1.0E�03 30 666E+03 2.54 0.544
2.0E�03 50 804E+03 2.56 0.713
5.0E�03 100 1627E+03 2.87 1.12
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K�1 and in Eq. (4b) for the volumetric capacity heat,
Cf(T wÞ ¼ Cw for 1 6 w 6 n ¼ 7, where Cf(0 �C) = 1299.60
J m�3 K�1, Cf(20 �C) = 1202.17 J m�3 K�1, Cf(40 �C) =
1169.70 J m�3 K�1, Cf(60 �C) = 1104.75 J m�3 K�1, Cf

(80 �C) = 1039.80 J m�3 K�1,Cf(100 �C) = 974.85 J m�3

K�1, Cf(120 �C) = 909.90 J m�3 K�1.
For five measurement points and assuming no error in

the temperatures, Fig. 4 shows the estimations for heat
capacity and thermal conductivity of the fluid, a and b,
respectively. If there is a small error in the measurements
(r = 0.5) and if the same values for the rest of parameters
are used, similar results are obtained by increasing the num-
ber of measurement points from 5 to 7. When r = 0.5, the
measured temperature errors will be within �1.288 to
1.288 for a 99% confidence bounds, which implies that a
total of about 2.576 temperature errors is allowed. The tem-
perature at xf will range from 0 to 120 �C, thus the average
relative measurement error is about 4%. For the case when
r = 1.0 the average relative measurement error is about
6.6%.

The average relative error between the exact and esti-
mated values for kf and Cf is defined as
kerror ¼
XZ

j¼1

kf ;exðxf ; tjÞ � kf ;obtðxf ; tjÞ
kf ;exðxf ; tjÞ

����
���� 100%

Z
ð11Þ

Cerror ¼
XZ

j¼1

Cf ;exðxf ; tjÞ � Cf;obtðxf ; tjÞ
Cf ;exðxf ; tjÞ

����
���� 100%

Z
ð12Þ
The values of these errors are shown in each simulation
(Figs. 4–10). Errors are always less than 3%, a value quite
acceptable for this kind of inverse problems that proves the
robustness of the proposed method. Also, errors increase
as r increases and P decreases as expected.

To appreciate the effect of the value of the initial point
of the estimation, different points have been selected, elim-
inating step (ii) of the procedure, providing the estimations
of Figs. 6 and 7, for which r = 0.5 and 1, respectively. As
may be seen, this effect can only be appreciated at the two
or three first points of the estimation. Also, it can be seen
that a decrease in the value of DT a leads to increase the
errors in the first points of estimations. As expected, the
estimations of Fig. 6, past the first two stretches, are more
exact than those in Fig. 7.

Figs. 8–10 are devoted to a study of the influence of the
parameters Kk and KC (increments of the unknown quanti-
ties thermal conductivity and heat capacity, respectively),
using two values for DT a. Due to the large number of vari-
ables that influences the problem it is not easy to infer the
effect of each one in the error. Finally Table 1 shows the
values of the average relative errors for three simulations
with P = 7, r = 1.0, Dt ¼0.5 s and DT a ¼20 �C. The value
of the functional, assuming that rz,f includes the total
number of measurement for each sensor within the com-
plete interval of 0–120 �C, is also shown in the table. An
increase in the functional provides an increase in the aver-
age relative error. The minimum value of the functional
(and error) occurs for Kk = 1.0E�03 and KC = 30
(Fig. 7), so that this is the best estimation obtained by
the method for this problem.

7. Conclusion

A procedure for the simultaneous estimation of thermal
conductivity and heat capacity for a fluid flowing through a
circular duct in the form of an inverse problem is proposed.
Standard, easy to implement boundary conditions are
used. Several examples are solved, showing that it is neces-
sary to install several measurement points both near and
within the region where the incident heat flux is applied.
The influence of all the typical parameters that take part
in this kind of problems, such as the number of reading
points, the error in the temperature measurements, the tem-
perature range for each stretch, the initial point of estima-
tion and the initial increases in the slopes of the stretches of
each property. Final estimations, in general, closely agree
with the exact solution.
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[15] F. Alhama, J. Zueco, C.F. González-Fernández, An efficient method
to determine thermal conductivity and heat capacity in solids as an
inverse problem, Int. Comm. Heat Mass Transfer 31 (7) (2004) 929.

[16] F. Alhama, J. Zueco, C.F. González-Fernández, An inverse determi-
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